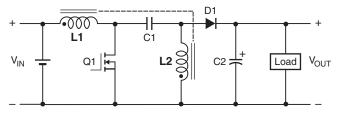

# Coupled Inductors - LPD4012 For SEPIC and other Applications




The LPD4012 coupled miniature shielded inductors are only 1,1 mm high and 4 mm square. Their excellent coupling coefficient (k ≥ 0.94) makes them ideal for use in SEPIC applications. In SEPIC topologies, the reguired inductance for each winding in a coupled inductor is half the value needed for two separate inductors. allowing selection of a part with lower DCR and higher current handling.

These inductors provide high efficiency and excellent current handling in a rugged, low cost part.

They can also be used as two single inductors connected in series or parallel, as a common mode choke or as a 1:1 transformer.





#### **Typical SEPIC schematic**

Refer to Application Note, Document 639, "Selecting Coupled Inductors for SEPIC Applications." Visit http://www.coilcraft.com/apps/sepic/selector 2.cfm for the Coilcraft on-line SEPIC Inductor Selector tool.

#### Core material Ferrite

Core and winding loss See www.coilcraft.com/coupledloss Weight 54 - 64 mg

**Terminations** RoHS compliant silver-palladium-platinum-glass frit. Other terminations available at additional cost.

Ambient temperature -40°C to +85°C with Irms current, +85°C to +125°C with derated current

Storage temperature Component: -40°C to +125°C. Packaging: -40°C to +80°C

#### Winding to winding isolation 100 V

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

#### Failures in Time (FIT) / Mean Time Between Failures (MTBF) 38 per billion hours / 26,315,789 hours, calculated per Telcordia SR-332

Packaging 1000/7" reel; 3500/13" reel Plastic tape: 12 mm wide, 0.25 mm thick, 8 mm pocket spacing, 1.32 mm pocket depth Recommended pick and place nozzle OD: 4 mm; ID: ≤2 mm

PCB washing Only pure water or alcohol recommended

Specifications subject to change without notice. Please check our website for latest information.

Document 580-1 Revised 08/02/10



## Coupled Inductors for SEPIC Applications – LPD4012 Series

|                          |                                 |                             | SRF typ <sup>4</sup><br>(MHz) | Isat (A) <sup>5</sup> |          |          | 11110 (71)            |                      |
|--------------------------|---------------------------------|-----------------------------|-------------------------------|-----------------------|----------|----------|-----------------------|----------------------|
| Part number <sup>1</sup> | Inductance <sup>2</sup><br>(µH) | DCR max <sup>3</sup> (Ohms) |                               |                       |          |          | both                  | one                  |
|                          |                                 |                             |                               | 10% drop              | 20% drop | 30% drop | windings <sup>6</sup> | winding <sup>7</sup> |
| LPD4012-331NL_           | 0.33±30%                        | 0.042                       | 255                           | 5.2                   | 5.4      | 5.6      | 1.87                  | 2.65                 |
| LPD4012-561NL_           | $0.56 \pm 30\%$                 | 0.087                       | 185                           | 3.7                   | 3.8      | 3.9      | 1.30                  | 1.84                 |
| LPD4012-821NL_           | 0.82±30%                        | 0.100                       | 130                           | 3.2                   | 3.3      | 3.4      | 1.21                  | 1.72                 |
| LPD4012-152NL_           | 1.5 ±30%                        | 0.185                       | 86                            | 2.50                  | 2.81     | 2.91     | 1.15                  | 1.62                 |
| LPD4012-222NL_           | 2.2 ±30%                        | 0.235                       | 70                            | 2.30                  | 2.40     | 2.50     | 0.95                  | 1.35                 |
| LPD4012-332NL_           | 3.3 ±30%                        | 0.320                       | 48                            | 1.80                  | 1.90     | 2.00     | 0.75                  | 1.06                 |
| LPD4012-472ML_           | 4.7 ±20%                        | 0.500                       | 39                            | 1.60                  | 1.70     | 1.80     | 0.65                  | 0.92                 |
| LPD4012-562ML_           | 5.6 ±20%                        | 0.620                       | 32                            | 1.50                  | 1.60     | 1.60     | 0.55                  | 0.78                 |
| LPD4012-682ML_           | 6.8 ±20%                        | 0.530                       | 31                            | 1.20                  | 1.52     | 1.63     | 0.60                  | 0.86                 |
| LPD4012-822ML_           | 8.2 ±20%                        | 0.600                       | 29                            | 1.10                  | 1.20     | 1.30     | 0.55                  | 0.78                 |
| LPD4012-103ML_           | 10 ±20%                         | 0.750                       | 25                            | 0.98                  | 1.00     | 1.10     | 0.50                  | 0.71                 |
| LPD4012-153ML_           | 15 ±20%                         | 1.13                        | 21                            | 0.90                  | 0.92     | 0.93     | 0.43                  | 0.60                 |
| LPD4012-223ML_           | 22 ±20%                         | 1.63                        | 15                            | 0.70                  | 0.82     | 0.84     | 0.34                  | 0.48                 |
| LPD4012-333ML_           | 33 ±20%                         | 1.83                        | 12                            | 0.37                  | 0.57     | 0.58     | 0.31                  | 0.44                 |
| LPD4012-473ML_           | 47 ±20%                         | 2.52                        | 8.8                           | 0.33                  | 0.39     | 0.40     | 0.28                  | 0.39                 |
| LPD4012-683ML_           | 68 ±20%                         | 3.23                        | 7.8                           | 0.27                  | 0.36     | 0.37     | 0.25                  | 0.36                 |
| LPD4012-823ML_           | 82 ±20%                         | 3.66                        | 7.3                           | 0.27                  | 0.27     | 0.29     | 0.23                  | 0.31                 |
| LPD4012-104ML_           | 100 ±20%                        | 4.76                        | 6.1                           | 0.22                  | 0.28     | 0.29     | 0.20                  | 0.27                 |
| LPD4012-124ML_           | 120 ±20%                        | 5.54                        | 5.3                           | 0.21                  | 0.26     | 0.27     | 0.19                  | 0.27                 |
| LPD4012-154ML_           | 150 ±20%                        | 6.90                        | 4.6                           | 0.18                  | 0.26     | 0.27     | 0.17                  | 0.23                 |
| LPD4012-184ML_           | 180 ±20%                        | 8.75                        | 4.1                           | 0.16                  | 0.21     | 0.23     | 0.14                  | 0.18                 |
| LPD4012-224ML_           | 220 ±20%                        | 11.24                       | 3.3                           | 0.15                  | 0.16     | 0.17     | 0.12                  | 0.17                 |
| LPD4012-334ML_           | 330 ±20%                        | 17.00                       | 2.8                           | 0.13                  | 0.16     | 0.16     | 0.10                  | 0.14                 |

1. Please specify termination and packaging codes:

### LPD4012-564M L C

**Termination:** L = RoHS compliant Silver-palladium-platinum-glass frit. Special order:

T = RoHS tin-silver-copper (95.5/4/0.5) or S = non-RoHS tin-lead (63/37).

Packaging: C = 7" machine-ready reel. EIA-481 embossed plastic tape (1000 parts per full reel).

B = Less than full reel. In tape, but not machine ready. To have a leader and trailer added (\$25 charge), use code letter D instead.

D = 13" machine-ready reel. EIA-481 embossed plastic tape. Factory order only, not stocked (3500 parts per full real)

- Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value.
- DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the value.
- 4. SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.
- DC current, at which the inductance drops the specified amount from its value without current. It is the sum of the current flowing in both windings
- Equal current when applied to each winding simultaneously that causes a 40°C temperature rise from 25°C ambient. See temperature rise calculation.
- Maximum current when applied to one winding that causes a 40°C temperature rise from 25°C ambient. See temperature rise calculation.
- 8. Electrical specifications at 25°C.

Refer to Doc 639 "Selecting Coupled Inductors for SEPIC Applications." Refer to Doc 362 "Soldering Surface Mount Components" before soldering.

#### Temperature rise calculation based on specified Irms

Winding power loss =  $(I_{L1}^2 + I_{L2}^2) \times DCR$  in Watts (W)

Temperature rise = Winding power loss  $\times \frac{135^{\circ}\text{C}}{\text{W}}$ 

#### Examples for LPD4012-152ML:

#### Equal current in each winding (1.05 A):

Winding power loss = 
$$(1.05^2 + 1.05^2) \times 0.134 = 0.296$$
 W  
Temperature rise =  $0.296$  W  $\times \frac{135^{\circ}C}{W} = 40^{\circ}C$ 

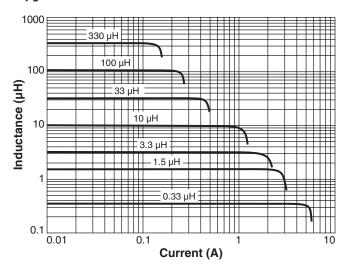
#### Unequal current ( $I_{L1} = 1.3 \text{ A}, I_{L2} = 0.7 \text{ A}$ ):

Winding power loss =  $(1.3^2 + 0.7^2) \times 0.134 = 0.292$  W Temperature rise = 0.292 W  $\times \frac{135^{\circ}C}{W} = 39.4^{\circ}C$ 

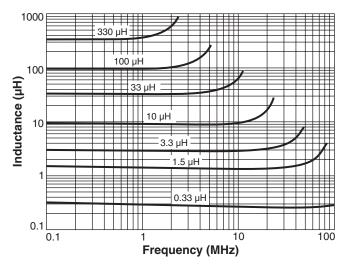
#### **Coupled Inductor Core and Winding Loss Calculator**

This web-based utility allows you to enter frequency, peak-to-peak (ripple) current, and Irms current to predict temperature rise and overall losses, including core loss. Visit www.coilcraft.com/coupledloss.

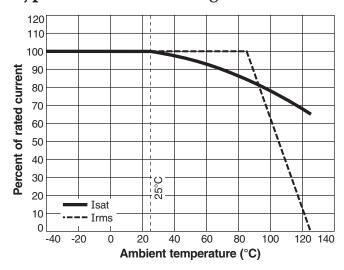



Specifications subject to change without notice. Please check our website for latest information.

Document 580-2 Revised 08/02/10/




## Coupled Inductors for SEPIC Applications – LPD4012 Series


### Typical L vs Current



### Typical L vs Frequency



### **Typical Current Derating**



